RS-232 25 Pin Connector on a DTE device


25 Pin Connector on a DTE device (PC connection)
Male RS232 DB25
Pin Number
Direction of signal:
1
Protective Ground
2
Transmitted Data (TD) Outgoing Data (from a DTE to a DCE)
3
Received Data (RD) Incoming Data (from a DCE to a DTE)
4
Request To Send (RTS) Outgoing flow control signal controlled by DTE
5
Clear To Send (CTS) Incoming flow control signal controlled by DCE
6
Data Set Ready (DSR) Incoming handshaking signal controlled by DCE
7
Signal Ground Common reference voltage
8
Carrier Detect (CD) Incoming signal from a modem
20
Data Terminal Ready (DTR) Outgoing handshaking signal controlled by DTE

22 Ring Indicator (RI) Incoming signal from a modem

Description of commonly Used pins Rs 232


The TD (transmit data) wire is the one through which data from a DTE device is transmitted to a DCE device. This name can be deceiving, because this wire is used by a DCE device to receive its data. The TD line is kept in a mark condition by the DTE device when it is idle. The RD (receive data) wire is the one on which data is received by a DTE device, and the DCE device keeps this line in a mark condition when idle.
RTS stands for Request To Send. This line and the CTS line are used when "hardware flow control" is enabled in both the DTE and DCE devices. The DTE device puts this line in a mark condition to tell the remote device that it is ready and able to receive data. If the DTE device is not able to receive data (typically because its receive buffer is almost full), it will put this line in the space condition as a signal to the DCE to stop sending data. When the DTE device is ready to receive more data (i.e. after data has been removed from its receive buffer), it will place this line back in the mark condition. The complement of the RTS wire is CTS, which stands for Clear To Send. The DCE device puts this line in a mark condition to tell the DTE device that it is ready to receive the data. Likewise, if the DCE device is unable to receive data, it will place this line in the space condition. Together, these two lines make up what is called RTS/CTS or "hardware" flow control. WinWedge supports this type of flow control, as well as Xon/XOff or "software" flow control. Software flow control uses special control characters transmitted from one device to another to tell the other device to stop or start sending data. With software flow control the RTS and CTS lines are not normally used. 
DTR stands for Data Terminal Ready. Its intended function is very similar to the RTS line. DSR (Data Set Ready) is the companion to DTR in the same way that CTS is to RTS. Some serial devices use DTR and DSR as signals to simply confirm that a device is connected and is turned on. WinWedge sets DTR to the mark state when the serial port is opened and leaves it in that state until the port is closed. The DTR and DSR lines were originally designed to provide an alternate method of hardware handshaking. It would be pointless to use both RTS/CTS and DTR/DSR for flow control signals at the same time. Because of this, DTR and DSR are rarely used for flow control.
CD stands for Carrier Detect. Carrier Detect is used by a modem to signal that it has a made a connection with another modem, or has detected a carrier tone.
The last remaining line is RI or Ring Indicator. A modem toggles the state of this line when an incoming call rings your phone. 
The Carrier Detect (CD) and the Ring Indicator (RI) lines are only available in connections to a modem. Because most modems transmit status information to a PC when either a carrier signal is detected (i.e. when a connection is made to another modem) or when the line is ringing, these two lines are rarely used. 
 

No comments:

Post a Comment

its cool